

BD MAX[™] Extended Enteric Bacterial Panel (xEBP)

TABLE OF CONTENTS 1 In

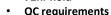
- 1) Introduction
- 2 Product Overview
- 3 Benefits of the BD Solution
- (4) Summary

WHY FOCUS ON ENTERIC TESTING?

BILLION CASES OF INFECTIOUS GASTRO-ENTERITIS PER YEAR WORLDWIDE¹

2ND LEADING CAUSE OF DEATH IN CHILDREN < 5 YEARS OLD¹

1 IN 6 AMERICANS GET SICK FROM FOOD-BORNE ILLNESSES PER YEAR²



Typical workflow with conventional methods

48hr read 72hr hold

Campy agar

42° incubation

Microaerophilic

- 35° incubation
- 24hr read
- 48hr hold

Salmonella/Shigella Agar

- 35° incubation
- Multiple types
- 24hr read
- 48hr hold
- High false positives H2S+

Yersinia (CIN) Agar

- 25° incubation
- High false positives

E. Coli 0157 Agar

- 35° incubation
- 48hr hold
- High false positives w/SMAC
- High cost with CHROMagar

Shigatoxin EIA

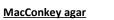
- Costly additional test
- Additional workflow
- 90 min test
- Direct fresh stool. broth or plate
- Culture most frequently used •

25° incubator

Used for Yesinia testing only •

42° incubator

Used almost solely for Campy • testing


- 35° incubator
- Aerobic conditions
- Main incubator in lab

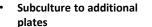
Campy EZ

- Used to generate
- environment for Campy
- **QC** requirements
- Campy stock culture regd

- 35° incubation
- 24hr read
- Non fermenters
- Suspicious colonies ID'd or subcultured

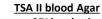
- 35° incubation
- .
- Subculture to additional plates
- 24-48hr incubation/screen •

- 24hr read



Broth culture

- 24hr read



Typical workflow with conventional methods

Campy agar 42° incubation

- Microaerophilic
- 48hr read
- 72hr hold
- **OC** requirements

- 35° incubation
- 24hr read
- 48hr hold

Salmonella/Shigella Agar

- 35° incubation
- Multiple types
- 24hr read
- 48hr hold
- High false positives H2S+

Yersinia (CIN) Agar

- 25° incubation
- 24hr read
- High false positives

E. Coli 0157 Agar

- 35° incubation
- 24hr read
- High false positives w/SMAC
- High cost with CHROMagar

Shigatoxin EIA

- Costly additional test
- Additional workflow
- 90 min test
- Direct fresh stool. broth or plate
- Culture most frequently used •

25° incubator

Used for Yesinia testing only •

42° incubator

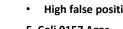
• Used almost solely for Campy testing

35° incubator

- Aerobic conditions
- Main incubator in lab

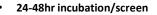
Campy EZ

- Used to generate
- environment for Campy
- **QC** requirements
- Campy stock culture regd



- Subculture to additional plates

- 48hr hold


- 24hr read
- 48hr hold
- Non fermenters

35° incubation

Suspicious colonies ID'd or subcultured

Broth culture

- 35° incubation
- 24hr read

64% of negative stool cultures required some testing beyond the primary media.

Due to low positivity rate, the cost of finding ONE positive = \$427

5 technologists were monitored for time and supplies needed to work up 206 stool cultures Cost = \$2137.30, 5 positives were identified

BD

Product Overview

BD MAX[™] EXTENDED ENTERIC BACTERIAL OPTION... FULL BACTERIAL COVERAGE <u>WHEN NEEDED</u>

Routine

• **Routine** use with the Enteric Bacterial Panel virtually eliminates need for culture or conventional tests to screen for bacterial pathogens

Versatile

Flexible use based on patient status, history and clinical presentation

We give you a CHOICE!

WHY TEST FOR THESE ORGANISMS?

• **<u>ETEC</u>**^{4,5}

- Leading cause of "travelers' diarrhea"
- High risk regions: Asia, Middle East, Africa, Mexico, Central and South America
- Becoming recognized as an important source of foodborne illness in the U.S.
- Frequently resistant to common antibiotics

• Vibrio spp.⁴

- CDC reports 80,000 illnesses per year in the U.S.
- Associated with raw or undercooked seafood; seawater in wounds
- Most infections occur May-October

WHY TEST FOR THESE ORGANISMS?

Yersinia enterocolitica⁷

Ingestion of "chitterlings", made from pig intestines: common in several countries and certain regions of the U.S.

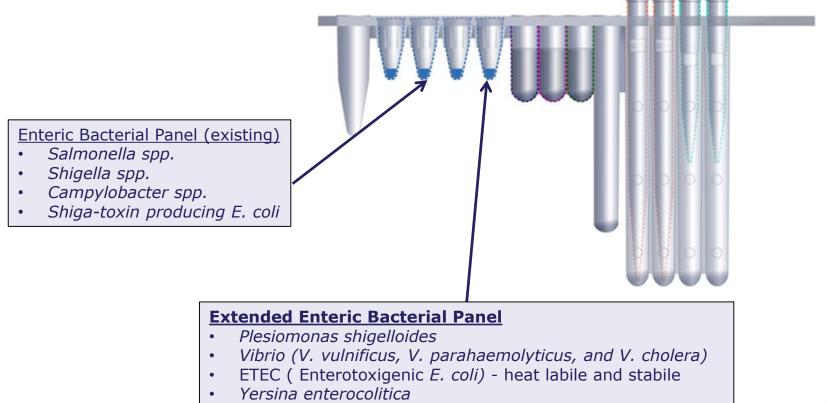
- CDC reports 170,000 illnesses per year in the U.S.
- Occurs most often in young children

<u>Plesiomonas shigelloides⁸</u>

- Associated with environmental contamination of freshwater bodies
- Series of foodborne outbreaks attributed to
 P. shigelloides has occurred over the past 2 decades
- Often overlooked in stool samples

Why not Aeromonas?⁹

The genus *Aeromonas* is commonly found in aquatic environments, being isolated from rivers, lakes, ponds, seawater (estuaries), drinking water, groundwater, wastewater and sewage.


The exact incidence of *Aeromonas* infections on a global basis is unknown. *Aeromonas* is not a reportable condition in the U.S. or in most other countries around the world.

One of the troubling aspects of *Aeromonas* gastroenteritis has been the inability to document a clear-cut association between outbreaks of diarrheal disease that are unquestionably epidemiologically linked to it.

THE BD MAX EXTENDED ENTERIC BACTERIAL SOLUTION – CONFIGURATION

THE BD MAX EXTENDED ENTERIC BACTERIAL SOLUTION – PROSPECTIVE PERFORMANCE

Specimen Type	Vibrio		P. shigelloides		Y. enterocolitica		ETEC	
	PPA	NPA	PPA	NPA	PPA	NPA	PPA	NPA
Unpreserved Prospective	No data	99.8%	No data	99.9%	No data	100%	100%	99.9%
Cary-Blair Prospective	100%	99.6%	No data	99.9%	No data	99.9%	100%	99.8%

THE BD MAX EXTENDED ENTERIC BACTERIAL SOLUTION – RETROSPECTIVE PERFORMANCE

Specimen Type	Vibrio		P. shigelloides		Y. enterocolitica		ETEC	
	PPA	NPA	PPA	NPA	PPA	NPA	PPA	NPA
Unpreserved Retrospective	100%	97.8%	100%	97.9%	100%	100%	90%	96.3%
Cary-Blair Retrospective	100%	100%	100%	100%	No data	No data	100%	100%

THE BD MAX EXTENDED ENTERIC BACTERIAL SOLUTION – PACKAGING AND LABELLING

Kit Contents

- xEBP Package Insert
- 24 xEBP Master Mix snap-in tubes
 - 2 blue-top pouches of 12 each
 - xEBP MM snap-in tube blue foil, readable D8 code

Assay Kit **DOES NOT** contain Sample Buffer Tubes, Strips, Extraction Reagents

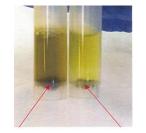
xEBP Assay **CANNOT** *run alone*

xEBP **MUST** be run in combination with the **EBP assay**

THE BD MAX EXTENDED ENTERIC BACTERIAL SOLUTION – SPECIMEN TRANSPORT

Specimens:

- Unpreserved liquid or soft stool samples
 - Transfer liquid or soft stool samples to a dry, clean container. Avoid contamination with water or urine.
- Preserved stool samples in Cary-Blair transport media
 - Transfer liquid or soft stool samples to a 15 mL transport device according to the manufacturer's instructions
- Store at 23-27°C up to 24 hours or at 2-8°C for up to 5 days



Enteric Bacterial and Extended Enteric Bacterial Sample Prep

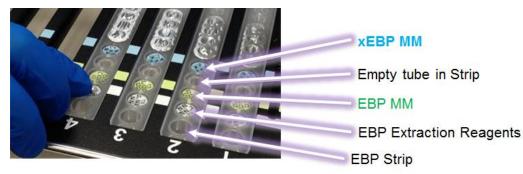
- Vortex unformed stool or Cary-Blair sample
- Insert a 10 μL disposable inoculation loop into stool sample
- Transfer properly loaded loop into the corresponding Sample Buffer Tube
- Roll the loop between fingers to release the specimen from loop
- Close the inoculated Sample Buffer Tube using a Septum Cap
- Vortex all prepared Sample Buffer Tubes for 1 minute
- Load Rack(s)

Incorrect Method

Correct Method

Some settled particulates
SB is "tea" stained in color

- Large mass of particulates
- SB is too dark



- Load rack, align Extraction, EBP MM and xEBP MM tubes according to designated colors
 - Rack with blue line is not a necessity...there will be no other place to put the xEBP MM except in the open spot (snap-4)once EBP reagents are loaded into the positions that are color coded
- Ensure cartridge has both top and bottom rows available

 From loop collection device to end of PCR HOT & TTR from R&D testing 	BD MAX™ xEBP (including EBP)
Manual steps	 Inoculating loop of stool, transferring sample to SBT, vortexing Run setup All steps performed at room temperature
Hands-on-time (HOT)	 22 minutes 28 seconds (24 samples)
Total-time (including extraction and PCR)	 206 minutes 8 seconds (24 samples-2MM)

Reimbursement (U.S.)

as of 5/2017

	Number of Targets	Applicable Panel	Reimbursement
Infectious agent detection by nucleic acid (DNA or RNA); gastrointestinal pathogen (e.g., Clostridium difficile, E. coli, Salmonella, Shigella, norovirus, Giardia), includes multiplex reverse transcription, when performed, and multiplex amplified probe technique, multiple types or subtypes	6-10 (87506)	EBP/xEBP	\$300 x 1

- Results are reported for each target individually
 - UNR result may be obtained for one or more xEBP targets; the rest are reportable
- In the case of a complete (all targets) UNR, it is necessary to repeat the EBP/xEBP processing
 - Can be retested 1 time from Inoculated Sample
 Buffer Tubes

ASSAY RESULT REPORTED	INTERPRETATION OF RESULT			
Plesio POS	Plesiomonas shigelloides DNA detected			
Plesio NEG	Plesiomonas shigelloides DNA detected			
Plesio UNR	Unresolved – inhibitory specimen or reagent failure; no target or Sample Processing Control amplification			
Vibrio POS	Vibrio (vulnificus, parahaemolyticus, and/or cholerae) DN detected			
Vibrio NEG	No Vibrio (vulnificus, parahaemolyticus, and/or cholerae DNA detected			
Vibrio UNR	Unresolved – inhibitory specimen or reagent failure; no target or Sample Processing Control amplification			
ETEC POS	Heat labile and/or heat stabile (LT/ST) ETEC (Enterotoxigenic <i>E. coli</i>) DNA detected			
ETEC NEG	No heat labile and/or heat stabile (LT/ST) ETEC (Enterotoxigenic <i>E. coli</i>) DNA detected			
ETEC UNR	Unresolved – inhibitory specimen or reagent failure; no target or Sample Processing Control amplification			
Yersi POS	Yersina enterocolitica DNA detected			
Yersi NEG	No Yersina enterocolitica DNA detected			
Yersi UNR	Unresolved – inhibitory specimen or reagent failure; no target or Sample Processing Control amplification			
Indeterminate (IND)	Indeterminate due to BD MAX™ System failure (with Warning or Error Codes)			
Incomplete (INC)	Incomplete Run (with Warning or Error Codes)			

Benefits of the Enteric Solution

THE BD MAX[™] SYSTEM PROVIDES A SIMPLE AND EFFICIENT WAY TO RUN MOLECULAR ASSAYS

GOAL Reaching More Patients with the Right tests at the Right time

CHALLENGE

The lab needs one system with the ability to provide:

- A variety of testing options for infection control
- An expanding offering to keep up with emerging diagnostic requirements
- Tailored options based on specific patient needs

THE BD MAX SYSTEM FEATURES

- A broad and flexible syndromic test selection
- An innovative assay pipeline, with complete testing solutions in development
- A suite of Open System Reagents for User-Defined Protocols

OPTIMIZE WORKFLOW TO IMPROVE PATIENT CARE

LESS THAN 1 MINUTE* HANDS-ON TIME PER SPECIMEN¹⁰

15 MINUTES* HANDS-ON TIME PER RUN¹⁰

OVER 2 HOURS* WALK-AWAY TIME PER RUN¹¹

TESTING FLEXIBILITY

- Runs 1–24 samples and different assays at the same time 10
- Tests a wide range of sample types¹¹

STAFF PRODUCTIVITY THROUGH AUTOMATION¹¹

• Offers simple implementation and standardized workflow

OPPORTUNITY TO REDUCE TOTAL COST¹³

• Enables increased testing volume through streamlined workflow

Efficiency: BD MAX Enteric panels provide more accurate¹³ and faster¹⁴ results (over conventional methods) for the diagnosis of infectious gastroenteritis

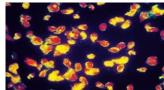
Versatility: Our focused syndromic approach offers clinicians the ability to order tests based on patient history and clinical presentation.

Performance: GI testing can be done on the same platform as higher-volume HAI testing, on a system that requires minimal expertise and hands-on time

BD MAX Enteric Solutions...targeted, clinically relevant results in an automated, cost effective platform

Focused Panels designed for comprehensive pathogen detection allow for *full flexibility* based on clinical needs

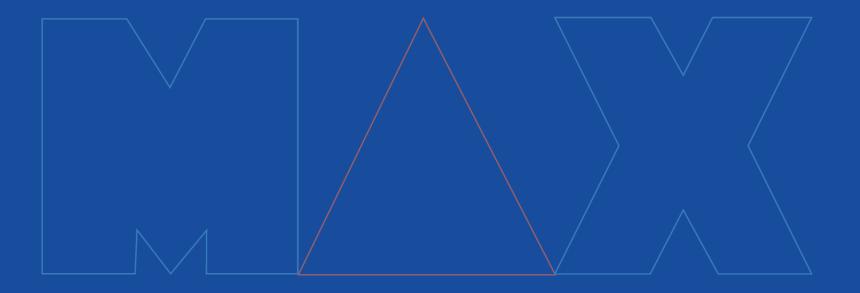
BD MAX System provides full automation with broad IVD and OSR molecular menu options enhancing *efficiency* and *accuracy* for laboratories.


Cadence of panel launches addresses customer enteric testing needs based on IDSA guidelines

- BD MAX Enteric Bacterial Panel and Extended Enteric Bacterial Panel
- BD MAX Enteric Parasite Panel
- BD MAX Enteric Viral Panel*

* Product under development. Not available for sale.

Microscopy images (top to bottom) courtesy of CDC Public Health Image Library (<u>http://phil.cdc.gov/phil/details.asp</u>)



- 1. WHO Fact Sheet, APRIL 2013. http://www.who.int/mediacentre/factsheets/fs330
- 2. CDC 2016. http://www.cdc.gov/foodsafety/foodborne-germs
- 3. Beal et al; May 2013 ASM
- 4. Mayo Clinic Symptoms and Causes of Travelers' Diarrhea; October 2016
- 5. CDC 2014. http://www.cdc.gov/ecoli/etec
- 6. CDC 2016. http://www.cdc.gov/vibrio
- 7. CDC 2016. http://www.cdc.gov/yersinia
- 8. Janda et al. Plesiomonas shigelloides Revisited; ASM Clinical Microbiology Reviews; April 2016; Volume 20 Number 2
- 9. Janda et al. The Genus Aeromonas: Taxonomy, Pathogenicity and Infection; ASM Clinical Microbiology Reviews; Jan 2010
- 10. Hirvonen and Kaukoranta. Comparison of BD MAX Cdiff molecular assays for detection of toxigenic *Clostridium difficile* from stools in conventional sample containers and in FecalSwabs;Eur J Clin Microbiol Infect Dis; January 2015
- 11. Felder et al. Process Evaluation of an Open Architecture Real-Time Molecular Laboratory Platform; JLA; May 2014
- 12. Bauman. Transitioning from Culture to Molecular; Advance for Laboratory Professionals; June 2015
- 13. Knabl et al. Comparison of BD MAX EBP assay with conventional diagnostic procedures in diarrheal stool samples; Eur J Clin Microbiol Infect Dis; 2016, 35:131-136
- 14. Mortensen et al. Comparison of time-motion analysis of conventional stool culture and the BD MAX EBP; BMC Clinical Pathology; 2015, 15:9

